Effects of NO donors and synthase agonists on endothelial cell uptake of L-Arg and superoxide production.

نویسندگان

  • A A Ogonowski
  • W H Kaesemeyer
  • L Jin
  • V Ganapathy
  • F H Leibach
  • R W Caldwell
چکیده

It is commonly believed that the activity of NO synthase (NOS) solely controls NO production from its substrates, L-Arg and O(2). The Michaelis-Menten constant (K(m)) of NOS for L-Arg is in the micromolar range; cellular levels of L-Arg are much higher. However, evidence strongly suggests that cellular supply of L-Arg may become limiting and lead to reduced NO and increased superoxide anion (O(-)(2)*) formation, promoting cardiovascular dysfunction. Uptake of L-Arg into cells occurs primarily (approximately 85%) through the actions of a Na(+)-independent, carrier-mediated transporter (system y(+)). We have examined the effects of NOS agonists (substance P, bradykinin, and ACh) and NO donors (S-nitroso-N-acetyl-penicillamine and dipropylenetriamine NONOate) on transport of L-Arg into bovine aortic endothelial cells (BAEC). Our results demonstrate that NOS agonists increase y(+) transporter activity. A rapidly acting NO donor initially increases L-Arg uptake; however, after longer exposure, L-Arg uptake is suppressed. Exposure of BAEC without L-Arg to substance P and a Ca(2+) ionophore (A-23187) increased O(-)(2)* formation, which was blocked with concurrent presence of L-Arg or the NOS antagonist N(omega)-nitro-L-arginine methyl ester. We conclude that factors including NO itself control y(+) transport function and the production of NO and O(-)(2)*.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

INFLUENCE OF ENDO THELIUM REMOVAL AND LNAME ON RESPONSES OF RAT COMMON CAROTID ARTERY TO α-ADRENOCEPTOR AGONISTS

In this study we investigated the effects of endothelium removal and L-NAME on responses to α-adrenoceptor agonists. Male Wistar rats were killed by overdose with pentobarbitone sodium, after which the left and right common carotid arteries were removed. Rings of arteries 3-4 mm in length were cut from each vessel and then mounted in 10 mL isolated organ bath, bathed in Krebs maintained at ...

متن کامل

Effect of Exogenous Application of L-arginine and Sodium Nitroprusside on Fruit Abscission and Physiological Disorders of Pistachio (Pistacia Vera L.) Scions

Pistachio yield are often negatively affected by some physiological problems such as abscission of inflorescence buds and fruits, deformed or blank nuts, and non-split shells. In the present study the effect of exogenous application of arginine (Arg) (a substrate for nitric oxide (NO) synthase) and sodium nitroproside (SNP), as a NO-donor was investigated on yield production, fruit and inflores...

متن کامل

Cellular interactions between L-arginine and asymmetric dimethylarginine: Transport and metabolism

This study was aimed to examine the effect of L-arginine (ARG) exposure on the disposition of asymmetric dimethylarginine (ADMA) in human endothelial cells. Although the role of ADMA as an inhibitor of endothelial nitric oxide synthase (eNOS) is well-recognized, cellular interactions between ARG and ADMA are not well-characterized. EA.hy926 human vascular endothelial cells were exposed to 15N4-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 278 1  شماره 

صفحات  -

تاریخ انتشار 2000